| VRSTA GRADIVA | analitična raven (sestavni del), tekstovno    gradivo, tiskano, 1.01 - izvirni znanstveni članek | 
| DRŽAVA IZIDA | Slovenija | 
| LETO IZIDA | 2004 | 
| JEZIK BESEDILA/IZVIRNIKA | slovenski | 
| PISAVA | latinica | 
| AVTOR | Rotovnik, Tomaž - avtor | 
| ODGOVORNOST | Horvat, Bogomir - avtor // Kačič, Zdravko -   avtor | 
| NASLOV | Zasnova sistema za avtomatsko razpoznavanje   govora s podporo mere zaupanja | 
| V PUBLIKACIJI | Elektrotehniški vestnik. - ISSN 0013-5852. -ǂLetn. ǂ71, ǂšt. ǂ3 (2004), str. 128-133. | 
| KRATKA VSEBINA | V članku obravnavamo sistem za avtomatsko     razpoznavanje govora (ARG), ki vključuje podporo za ovrednotenje razpoznanehipoteze (mera zaupanja). Proučili smo vpliv mere zaupanja na uspešnost    razpoznavanja. Uporabili smo več mer zaupanja ter s pomočjo le-teh in      l1elinearnega klasifikatorja izboljšali uspešnost izločanja besed, ki jih  ni v slovarju. Mero zaupanja smo ovrednotili z napako zamenjave (CER -     Confusion Error Rate) in s krivuljo ROC (Receiver Operating                Characteristic). Z uporabo akustične mere zaupanja smo pri slovenski       govorni bazi SpeechdatII dosegli CER 12.5%. Z uporabo klasifikatorja na    podlagi nevronske mreže smo dodatno zmanjšali napako CER za 2.2%. // The   paper is concerned with an architecture for the ASR (Automatic Speech      Recognition) system with integrated confidence measure (CM) support. The   system was designed to be modular, upgradeable, scalable. This means that  any module can be improved, while its improvement will not affect other    modules. Figure 1 shows the architecture of this system. CM is defined as aposterior probability of word correctness, given the values of some set of confidence indicators [6]. CM can be used in several applications          throughout the recognition process. In the presented system, it is used fordetecting Out Of Vocabulary (OOV) words, where it belongs to the acoustic  CM category [5]. Equation (2) presents the derived CM equation and is basedon statistics, derived directly from the maximum-likelihood Viterbi beam   search decoder. Prob(Wi) is assigned for acoustical probability of the     recognized word Wi in interval [ts, TJ. In the search process, there is no information on the recognized sequence of the states for word Wi (word     level alignment). Because Prob (Wi) includes intra-model probabilities, thesecond element compensates their influence on CM, since CM will decrease   when the length of word Wi increases. Intramodel probabilities were set to 0.5, and had only a minor impact on the recognition accuracy (less than 1  %). The last element is the Experiments were performed on the Slovenian    speech database SpeechdatII [3] and were divided into three pans. First we investigated the influence of the search space size and the number of      Gaussian mixtures on the acoustic CM. Reduction of the search space has a  small inpact on ability to differentiate between correct and OOV words     (decreased). The different number of Gaussian mixtures in our experiments  shows no influence on acoustic CM. Then we performed evaluation with       acoustic CM. We used the ROC curve (Receiver Operation Characteristics) to show the efficiency of acoustic CM (Figure 4), since it shows the relation between correctly accepted correct hypotheses and incorrectly accepted     incorrect hypotheses. In the last part, non-linear classifiers rejected OOVwords and incorrectly recognized words. The CM efficiency was estimated    with the CER - Confusion Error Rate (Eq.3), ERI (Eq.4) and ER2 (Eq.5) errorrates. Calculation of acoustic CM presented less than 3% of the total      recognition process time and CM correctly rejected 75% of OOV words and    achieved a 12,5% CER. The best results were achieved with a non-linear     classifier based on neural networks (Table 2a). System decreased CER for   2.2% absolute, when compared to the baseline system with only acoustic     confidence measure (Table 1b). | 
| OPOMBE | Povzetek ; Abstract // Bibliografija: str. 133 | 
| OSTALI NASLOVI | Architecture of ASR System with confidence    measure support | 
| PREDMETNE OZNAKE | // avtomatsko razpoznavanje govora // napake // šum // algoritmi | 
| UDK | 004.9:007.5 |